Curriculum for Master of Technology in Production Engineering (PRD)

Department of Mechanical Engineering Delhi Technological University Shahbad-Daulatpur, Delhi-110042

M.Tech. (Production Engineering)

M.Tech. (Production Engineering) course is meant for those candidates, who are aspiring of higher education in the area of Production Engineering. The basic purpose of the course is to serve the society and the nation through teaching, research and development in the area of Production Engineering. Our aim is to build a center of excellence to give the exposure of Production processes to improve the organizational efficiency and effectiveness.

The overall purpose of the proposed M.Tech. Programme is to establish a cohesive and expanding base of research Production Engineering. It will help in the sustainable growth of the industry, excellence in integrated research and education, and increase in national and international stature and economic competitiveness of Indian industries.

Nowadays, Production Engineering has attracted the attention of the researchers and practitioners to solve the industrial problems considering the sustainability and inclusive growth. Demand for the goods and services have been increasing day by day, but the availability of the resources is limited. Thus, It becomes important to improve the way of operations and design of the systems so that the resources can be conserved for future generation. It is important for the industry, society and nation to fulfil the need of the people without harming the ecological systems. The professional must be given a proper exposure of the sustainable growth of the economy. Considering these points, the curriculum of Production Engineering has been designed including the recent development in the technology, industrial constraints, and need of the society.

University Vision

"To be a world class university through education, innovation and research for the service of humanity "

University Mission

- 1. To establish centres of excellence in emerging areas of science, engineering, technology, management and allied areas.
- 2. To foster an ecosystem for incubation, product development, transfer of technology and entrepreneurship.
- 3. To create environment of collaboration, experimentation, imagination and creativity.
- 4. To develop human potential with analytical abilities, ethics and integrity.
- 5. To provide environment friendly, reasonable and sustainable solutions for local & global needs.

Program Educational Objectives PEOs

The objectives of the M.Tech. Programme in Production Engineering are:

PEO 1: To develop the scientific and engineering manpower of high quality to cater the need of the industries and institutes.

PEO 2: To provide a broad concept of Production Engineering.

PEO 3: To provide a deeper understanding of the area of specialization to solve the production problems.

PEO 4: To create some innovations for sustainable manufacturing systems.

PEO 5: To provide a capacity to learn continually and interact with interdisciplinary groups.

PEO 6: To develop the students with a capability to cater the requirements and aspirations of the society.

Program Outcomes (PO)

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering

•

Programme Specific Outcomes (PSOs)

PSO 1: Apply software skills in the field of decision making, optimization, simulation and modeling, statistics for optimal utilization of the different resources and improving the efficiency and affectiveness of the various processes in the industry.

PSO 2: Recognize the need for lifelong learning independently, with a high level of enthusiasm and commitment to improve knowledge and competence continuously.

PSO 3: The student will be employable, able to develop entrepreneurship and be equipped in applying knowledge of Production Engineering in solving various real time problems and also pursue higher studies.

With these objectives in mind, the M.Tech. Programme has been designed to include courses of study, practicals/seminars and project/thesis through which a student may develop his/her concepts and intellectual skills. The procedures and requirements stated in this proposal embody the philosophy and regulations of the M.Tech. education and ensure a high standard of performance at the University and industries.

This will certainly expand the demonstrated capability of the University in the area of Production Engineering applications and to explore research activities that broaden and expand research expertise in this field. It will definitely find appropriate opportunities for educational outreach activities and training courses for other institutes and universities near Delhi to create awareness and to stimulate interest in Production Engineering.

Eligibility Criteria: Students with Bachelor degree (4-years degree Programs; B.Tech./B.E/B.Sc.Engg., and equivalent degree) in Industrial / Manufacturing / Welding /Automation & Robotics /Automobile /Aeronautical/Aerospace/Energy/CADM/CIM/ foundry /Marine /Mechatronics/Metallurgy/ Mining/Tool and Die/Agriculture or equivalent of Engineering will be eligible to take admission in this program. For scholarship a valid GATE Score is mandatory.

Total Intake: 25

	DELHI TECHNOLOGICAL UNIVERSITY							
	(Formerly Delhi College of Engineering)							
	SCHEME OF FULL TIME M. TECH	H as pe	r NEP-2020					
MASTER	R OF TECHNOLOGY IN INDUSTRIAL ENGIN	EERIN	IG AND I	MANAGEMN	NET(IEM)			
	Semester-I							
Code	Туре	Cr	L-T-P	Total Credits	Level			
PRD 501	Theory of Metal Cutting	4	3-0-2					
PRD 503	Advanced Casting Processes	4	3-0-2					
PRD 505	Plasticity & Metal Forming	4	3-0-2					
PRD 507	Metrology	4	3-0-2					
	Department Elective -1							
DDD 511	Computer Aided Design / Computer Aided		3-0-2					
PRD 511	Manufacturing							
PRD 513	Computer Integrated Manufacturing Systems		3-0-2					
PRD 515	Mechatronics	4	3-0-2					
PRD 517	Principles of Machine Tools		3-1-0					
PRD 519	Automation in Manufacturing		3-0-2					
	Self-Study							
PRD 551	Seminar			24	500-599			
PRD 553	MOOC	2	-					
	Skill Enhancement Course 1							
PRD 541	IT in manufacturing Enterprise		0-0-4					
PRD 543	Professional Software	2	0-0-4					
	Audit Course							
UEC 501	English for Research Paper writing	0	2-0-0]				
UEC 503	Disaster Management	Ŭ	2-0-0					
UEC 505	Sanskrit for technical knowledge		2-0-0					
UEC 507	Value Education		2-0-0					
UEC 509	Constitution of India		2-0-0					
UEC 511	Pedagogy Studies		2-0-0	1				
UEC 513	Stress Management by Yoga		2-0-0					

	DELHI TECHNOLOG	ICAL U	INIVERSITY	ζ	
	(Formerly Delhi Colle	ege of E	ngineering)		
	SCHEME OF FULL TIME N	M. TECH	as per NEP-20	20	
	MASTER OF TECHNOLOGY IN COMP	PUTER A	IDED ANALY	SIS & DESIGN	
	Semest	ter-II			
Code	Туре	Cr	L-T-P	Total Credits	Level
PRD 502	Welding Processes & Metallurgy	4	3-0-2		
PRD 504	Automation & Robotics	4	3-0-2		
	Department Elective -2				
PRD 520	Materials Management	4	3-1-0		
PRD 522	Precision Engineering		3-0-2		
PRD 524	Operation Research		3-1-/0		
PRD 526	Methods Engineering and Ergonomics	4	3-0-2		
PRD 528	Composite Materials and Processing		3-0-2		
	Department Elective -3				
PRD 530	Maintenance Management		3-1-0		
PRD 532	Managerial Concept & Organizational Behaviour		3-1-0		
PRD 534	Industrial Quality Control	4	3-1-0	24	500-599
PRD 536	Supply Chain Management		3-0-2		
PRD 538	Production & Operation Management		3-0-2		
UEC 502	Research Methodology & IPR	4	3-1-0		
	Skill Enhancement Course 2				
PRD 540	Industrial Training	4	0-0-8		
PRD 542	Professional Software		0-0-8		
	NHEQF Lev	el			6.5

	Seme	ster-III		·	
Code	Туре	Cr	L-T-P	Total Credits	Level
PRD 601	Advanced Machining Processes	4	3-0-2		600-699*
	Open Elective			16	
OME 601	Optimization Techniques	4	3-1-0	10	
PRD 603	Minor Project/Research Thesis/Patent	8	-		
	Seme	ster-IV			
Code	Туре	Cr	L-T-P	Total Credits	Level
PRD 604	Major Project/Research Thesis/Patent	16	-	16	-
	NHEQF L	level			7.0

ANNEXURE-IV

SEMESTER-I

Course code: Course Title	Course Structure			Pre-Requisite
PRD 501. Theory of Metal Cutting	L	Т	Р	NII
TRD 301. Theory of Metal Cutting	3	0	2	

Course Objective: To familiarize the students with tool nomenclature and cutting forces, about heat distribution and thermal aspects of machining, knowledge on tool materials, tool life and tool wear. To impart knowledge on tool design and selection of machine tools. To comprehend the design of a variety of tools used in practical applications.

S. No.	Course Outcomes (CO)						
CO1	To understa	To understand the basics of single point and multipoint cutting tools.					
CO2	To understa cutting tool	and the conc l materials.	epts & theori	es in metal c	utting. Study	of recent advancement in	
CO3	To identify arising in n	the problen the problen the problem	n and applyin	g the fundan	nental concept	ts in solving the problem	
CO4	To select the skills of effective of the skills of the ski	ne tool and w fective utiliz	vork-piece ten ation of the cu	nperature and atting fluids.	l their effect o	n quality. To develop the	
C05	To apply the concepts in practical aspects of tool wear mechanisms, tool life, Machinability, their economic aspects and technological aspects.						
	-		CO-PO Arti	culation Ma	trix		
COs				POs			
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2 2 2 2 2 2					2	
CO3	2	2	2	2	2	2	
CO4	3	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

Note: Program may add up to three additional POs approved by BOS of the department. Note: Program may add up to three additional POs approved by BOS of the department.

S. No.	Content (PRD 501: Theory of Metal Cutting)	Contact
		Hours
Unit 1		8
	Mechanics of single point and multipoint cutting and abrasive metal removal processes, cutting forces	
Unit 2		8
	Analysis of work tool system as influenced by tool and work materials,	
	tool geometry and environmental and process variables,	
Unit 3	Heat transfer and temperature distribution outting fluids. Machanics of	9
	teel weer Teel life. Economics of metal removel surface finish and	
	dimensional accuracy	
TT 1 4	dimensional accuracy.	-
Unit 4	Tool Design, Tool design consideration, Selection of tool materials, Tooling economics and safety as related to tool design. Design of Single point cutting tools,	8
Unit 5		9
	Design of Carbide and Ceramic tipped tools, Design of Chip breakers,	
	Design of Multi point cutting tools, Design of Broaches, Twist drill,	
	Reamers and Milling cutters.	
	Total	42

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Metal cutting principles by M C Shaw, Oxford University press	2004				
2	Metal cutting Theory and practice by A Bhattacharya, New Central Book Agency	2017				
3	Fundamentals of Metal Cutting and Machine Tools by B.L. Juneja, Nitin Seth, G.S. Sekhon, New Age Publishers	2017				

Course code: Course Title			Course Structure			Pre-Requisite
PRD503:	Advanced	Casting	L	Т	Р	NIL
Processes			3	0	2	11112

Course Objective: To familiarize the students with the major concepts associated with metal casting. To impart a knowledge on design of gating & riser system, grain growth, solidification of metal and alloys, casting defects and inspection. To have a basic understanding of foundry practices and processes.

S. No.	Course Outcomes (CO)
CO1	To understand the uses of various types of casting methods sand, materials, moulding materials and additives. Bonding mechanism of the clay and types.
CO2	To identify the mathematical and science principles to understand the basic concepts for designing the riser, gating and various design aspects and complex models.
CO3	To formulate the various reasons for casting defects and their remedies. Study of various inspection methods in order to make the products without defects.
CO4	To select and study different metallurgical reactions of the various casting steels, alloys, composite materials.
C05	To apply the concepts in real-life applications with simulations, in cutting edge & newer technology, enhancement of yielding in casting.

CO-PO Articulation Matrix							
COs				POs			
	PO1 PO2 PO3 PO4 PO5 PO6						
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD503: Advanced Casting Processes)	Contact Hours
Unit 1	Casting Processes, Classification, Characteristics of sand-casting processes, metal mould casting processes and casting processes using other mould/core materials, Characteristics and selection of molding sand; Bonding Theory	8
Unit 2	Solidification of castings, casting design considerations, gating system design, riser design, nucleation and grain growth, solidification of pure metals, short and long freezing range alloys. Rate of solidification, macrostructure and microstructure. Solidification contraction; Mould-metal interface reactions.	9
Unit 3	Cast metals and alloys, Specific considerations to Grey CI, steel and non ferrous foundry practices. Inoculation and gas removal methods.	8
Unit 4	Casting defects; their causes and their removal, inspection of castings. Quality control in foundries Metal matrix composites and their properties and suitability as casting materials	9
Unit 5	Special casting processes. Foundry mechanization pollution control in foundries, recent developments.	8
	Total	42

REFERENCES							
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*					
1	Foundry Engineering by Taylor H.F., M.C.Flemings and J.Wulff., John Wiley	1959					
2	Foundry Technology by Beely P.R. Butterworths, London	1972					
3	Principles of metal castings by Heine R.W., C.R. Loper and P.C Rosenthal, Mc Graw-Hill	2001					

Course code: Course Title	Course Structure			Pre-Requisite
PRD 505: Plasticity & Metal	L	Т	Р	NII
Forming	3	0	2	

Course Objective: To familiarize the students with the various aspects of metal forming which is an efficient method for manufacturing components. To evaluate the suitability of various forming processes for various practical applications. To understand the latest advancements in forming technology & their practical Importance

S. No.	Course Outcomes (CO)
CO1	To explain, interpret and use the concepts of stress at a point, stress and strain tensors, Mohr's circle, invariants of stress, Principle of super position and reciprocal theorem and be able to apply in theoretical and practical formulation of elastic problems.
CO2	To understand the fundamental of Airy's stress function, Analysis of stress and strain in 3-d, ellipsoid, variational methods, Castigliano's theorems. Anisotropic elasticity, finite deformation elasticity and be able to analyze the bending of beams and curved beams.
CO3	To understand the assumptions underlying several continuum plasticity theories, deviatoric stress tensor, deformation theory, yield surface, normality rule, flow rule theory, Hill's anisotropic yield, Prandtl Reuss, Levy mises equations etc. and to apply the concepts of various yielding principles in formulation of plasticity problems and solutions.
CO4	To analyze the plasticity based problems using upper and lower bound theorems
CO5	To analyze and apply the slab methods. slip line field theory and extremum principles in solving various plasticity problems.

			CO-PO Art	iculation Ma	trix			
COs	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	2		
CO4	2	3	3	3	3	3		
CO5	3	3	3	3	3	3		

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program Note: Program may add up to three additional POs approved by BOS of the department.

S. No.	Content:- PRD 505: Plasticity & Metal Forming	Contact Hours
Unit 1	Elasticity, Review of two dimensional stress and strain, state of stress in three dimensions, Stress tensor, Invariants, Mohr's circle for 3-dimensional state of Stress, strain at a point, Mohr's circle for strain, Hydrostatic & amp; Deviatory components of stress, Elastic stress strain relations. Plane stress and plane strain Conditions.	9
Unit 2	Nature of plastic deformation, Flow curves, true stress & amp; true strain, Yield criteria for ductile metals, von Misses & amp; Tresca yield criteria, combined stress state tests. The yield locus, Anisotropy in yielding, Yield surface, Levy-Misses, Prandtl-Reuss equations, Octahedral shear stress and strain components, stress-strain relations in elastic and plastic problems, work hardening, formulation of elastic plastic problems.	8
Unit 3	Classification of forming processes, process and design variables in metal forming and their optimization, Hot working, Cold working, Strain rate effect, Friction and lubrication, Deformation zone geometry, Workability, Residual stress. Analytical method based on homogeneous compression slip line field theory, Upper bounds and lower bounds, Slab method of analysis. Flow stress determination,	8
Unit 4	Analysis of metal forming processes: Forging: die design and lubrication, Classification and selection of forging machines, Die failure and economics of forging, Analysis of forging operation, Load calculation in plane strain forging, Rolling: Forces & amp; geometrical relationship in rolling, Rolling load and torque in rolling operation, Extrusion: Analysis of direct and indirect extrusion process, Extrusion pressure, Wire and tube Drawing.	8
Unit 5	Sheet metal forming operations, Sheet metal cutting operations like blanking, shearing and laser cutting etc., Analysis of deep drawing, load, strip drawing and its force analysis, bending and spring back, Die design for deep drawing and bending. Drawability, Anisotropy and texture evaluation of sheet metal, Erischen cupping tests, Determination of Forming Limit Diagrams and their applications, Limiting dome height and Limiting draw ratio. Advances in metal forming operations	9
	Total	42

REFER	ENCES	
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*
1	Fundamentals of Metal forming process by Juneja B.L., New age international Publishers	2010
2	Principal of Industrial Metal working Processes by Rowe G.W, CBS publishers & Distributers	2005
3	Manufacturing Science by Ghosh Amitabha & Mallik Kumar Asok, East-West Prem Pvt Ltd	2002

Course code: Course Title	Course Structure			Pre-Requisite
PRD 507: Metrology	L	Т	Р	NIL
	3	0	2	11112

Course Objective: To familiarize the students with the basic theoretical, technical and legislative aspects of metrology, testing and quality management. To acquire knowledge of exact measurements of selected physical quantity and the evaluation of metrological measurements

S. No.		Course Outcomes (CO)							
CO1	To understan	To understand the basics of Metrology.							
CO2	To identify va	To identify various difficulties in Metrology.							
CO3	To formulate	various difficult	ties in Metrolog	у.					
CO4	To select app	ropriate process,	/tool/techniques	in Metrology.					
CO5	To apply kno of latest techn	To apply knowledge in relevance to professional practice and To understand the emerging trends of latest technology.							
		CO	-PO Articulat	ion Matrix					
COs				POs					
	PO1	PO2	PO3	PO4	PO5	PO6			
CO1	1	1	1	1	1	2			
CO2	2	2 2 2 2 2 2							
CO3	2	2	2	2	2	2			
CO4	2	2	3	3	3	3			

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below

3

3

3

3

Program Outcomes

3

CO5

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

3

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

3

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 507: Metrology)	Contact
		Hours
Unit 1	Introduction to dimensional metrology, limits, fits and tolerances, application of tolerances,	8
Unit 2	limit gauging, design of gauges, measuring instruments, comparators and their design considerations.	8
Unit 3	Angular measurements, auto collimators and interferometers. applications of dimensional inspection.	8
Unit 4	Measurement of screw threads, thread gauges for internal and external threads, gear inspection, inspection of surface quality, parameters for assessing surface finish and experimental methods of surface finish measurements, feature inspection, straightness, flatness, parallelism, squareness, circularity and roundness	9
Unit 5	Automated dimensional measurements, automatic gauging, automatic measuring machines for inspecting multiple work-piece dimensions, measurement with coordinate measuring machines.	9
	Total	42

REFER	REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*					
1	Fundamentals of Mechanical Inspection by R. Jenkins, McGraw Hill	1944					
2	Fundamentals of Dimensional Metrology by C. Dotson, Cengage Learning	2018					
3	Engineering Metrology by I.C. Gupta, Dhanpat Rai Publications,	2016					

SEMESTER - II

Course code: Course Title	Cour	se Struc	ture	Pre-Requisite
PRD 502: Welding Process & Metallurgy	L	Т	Р	NIL
Werding Frocess & Wetahurgy	3	0	2	14112

Course Objective: To familiarize the students with basics of processes for joining various materials, indepth understanding for the selection of right welding process for a particular application. This will further help in understanding the effect of welding parameters, selection of power sources and welding consumables, welding defects and inspection methods.

S. No.	Course Outcomes (CO)
CO1	To develop in-depth understanding for the selection of right material and right process to weld those materials.
CO2	To understand the effect of process parameters, selection of power sources and welding consumables.
CO3	To formulate and understand the specialized joining techniques and their real-life applications.
CO4	To select appropriate method to obtain crack free welds and achieve mechanical properties.
CO5	To apply knowledge in relevance to professional practice and to understand the emerging trends of latest technology in industrial applications.

			CO-PO Art	iculation Ma	trix			
COs	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	3		
CO4	2	2	3	3	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program Note: Program may add up to three additional POs approved by BOS of the department.

S. No.	Content (PRD 502: Welding Process & Metallurgy)	Contact Hours
Unit 1	Arc, gas and resistance welding processes oxy-acetelyne and arc cutting of metals. Review of modern welding and cutting methods.	9
Unit 2	Welding metallurgy, Heat and temperature during fusion welding, filler metal and metal transfer.	8
Unit 3	Weldability of plain carbon, low alloy, austenitic and other nikel crome steels, Problems and procedure for welding non-ferrous alloys: electrode selection.	9
Unit 4	Design of welded joints, Distortion, residual stresses and stress relieving.	8
Unit 5	Weld defects, Non destructive testing.	8
	Total	42

REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Principles of Welding Technology by L.M. Gourd ELBS/ Edward Arnold	1980			
2	Welding processes & technology by Dr. R.S.Parmar, Khanna Publishers	2022			

Course code: Course Title	Course Structure		ture	Pre-Requisite
PRD-504: Automation & Robotics	L	Т	Р	NII
1 KD-504. Automation & Robouts	3	0	2	11112

Course Objective: To be familiar with the automation and brief history of robot and applications. To give the student familiarities with the kinematics of robots. To impart the knowledge about robot end effectors and their design. To learn about Robot Programming methods & Languages of robot.

S. No.	Course Outcomes (CO)
CO1	To develop in-depth understanding of automation, different level of automation, part programming.
CO2	To understand the basics of robot, end effectors, kinematics of robot, method of robot programming.
CO3	To formulate and understand the controlling the robot system, and different drives and feedback control system.
CO4	To select suitable mechanism about robot safety in hazards situation.
CO5	To apply knowledge in relevance to professional practice and to understand the emerging trends of latest technology in industrial applications.

CO-PO Articulation Matrix							
COs	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD-504: Automation & Robotics)	Contact
		Hours
Unit 1	Automation: Introduction, Need and implications of automation in Manufacturing,	9
	Modern developments in automation in manufacturing and its effect on global	
	competitiveness, Actuators and sensors, Additive Manufacturing, different types of	
	production systems and automation, hard/fixed automation, Open and closed loop	
Unit 2		9
	Introduction to Robotics, Classification of Robots, Characteristics of	
	Robots, performance, advantages and disadvantages of a Robot, Human	
	robot interaction, Industrial applications of a robot	
Unit 3		9
	Fundamentals of a Robot: Various system, structure and definition, terms	
	relating to industrial Robots, basic terms related to Robot performance	
	and Characteristics, Control volume of a Robot, Robot languages and	
	programming. Industrial robotics & IOT	
Unit 4		8
	Controlling the Robot systems: Introduction to drives, Mechanical, Hydraulic,	
TT :4 5	Pheumatic, electric drives, leedback control	0
Unit 5	Robot safety: Introduction, potential safety hazards, safety planning	8
	check lists, safety guidelines, latest development in safety measurement	
	Total	42

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Automation, Production systems and Computer Integrated Manufacturing by Mikell P Groover, Printice Hall	2008				
2	Industrial Robotics: Technology, Programming and applications, by Mikell P Groover, McGraw-Hill	1986				
3						

SEMESTER - III

Course code: Course Title	Course Structure			Pre-Requisite
PRD-601: Advanced Machining	L	Т	Р	NII
Processes	3	0	2	

Course Objective: To familiarize the students with basics of advanced machining processes, To impart knowledge about the basic principles of operation for each process and their applications. State various process parameters influencing the machining process.

S. No.	Course Outcomes (CO)
CO1	To enrich students with overview and classification of advanced machining process
CO2	To comprehend working mechanism of advanced machining processes based on different energy.
CO3	To study the mathematical formulations of advanced machining processes and analyses the influence of various process parameters in each process on metal removal, heat affect zone and surface finish.
CO4	To learn hybrid advanced machining process to enhance overall performance of the machining process and its applications.
CO5	To apply latest technological developments and research trends in the field of advanced machining processes and to learn the need of industries' current necessity and environment related issue in advanced machining process with respect to new materials.

CO-PO Articulation Matrix							
COs	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	2	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD-601: Advanced Machining Processes)	Contact Hours
Unit 1	Introduction to advanced machining processes – need for such processes and application areas Mechanical Energy utilized advanced machining processes like ultrasonic machining, abrasive flow machining, magnetic abrasive finishing, magneto-rheological finishing, abrasive water jet machining - mechanics of cutting, process parametric analysis, process capabilities, applications.	9
Unit 2	Thermoelectric based advanced machining processes like electro discharge machining, wire EDM, Plasma Arc Machining, Laser Beam Machining, Focused Ion Beam Machining – working principles, material removal mechanisms, process capabilities and applications;	9
Unit 3	Electrochemical and Chemical Advanced Machining – ECG; Electro stream Drilling	8
Unit 4	Chemical Machining – process characteristics, numerical modelling of the processes, applications and limitations.	8
Unit 5	Plasma arc machining: Working principle, Plasma arc cutting system, applications.	8
	Total	42

REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Advanced machining process by Dr. V. K. Jain, Allied Publisers Pvt Ltd	2009			
2	Modern manufacturing process by Pandey & shan, Tata McGraw-Hill	2017			
3					

Department Elective 1

Course code: Course Title	Course Structure		ture	Pre-Requisite
PRD 511: Computer Aided Design	L	Т	Р	NII
Manufacturing	3	0	2	11112

Course Objective: To understand CNC classification, its need, construction details and part programming, adaptive control, inspection and rapid prototyping. To impart knowledge about computer aided process planning, computer aided assembly planning, computer aided inspection & reverse engineering.

S. No.	Course Outcomes (CO)
CO1	To identify and understand the evolution of CAD and CAM
CO2	To understand concepts of CNC, DNC, CAPP, FMS, CIM IN detail.
CO3	To formulate and apply acquired knowledge in programming using G codes and M codes
CO4	To apply the acquired knowledge in programming using APT language
CO5	To apply the acquired knowledge in preparing feasibility report to adopt CIM technology for the first time in the industry and to be capable of dealing with CAD, CAM, FMS, CAPP, CIM in industries.

			CO-PO Art	iculation Ma	trix		
COs	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 511 Computer Aided Design / Computer Aided Manufacturing)	Contact Hours
Unit 1		8
	Introduction to CAD/CAM, representation of curves, surfaces and solids	
	for CAD/CAM applications	
Unit 2	Computational geometry for manufacturing, product design for manufacture and assembly	8
Unit 3	Computer aided process planning computer aided assembly planning	9
	computer aided process plaining, computer aided assembly plaining, computer aided inspection & reverse engineering	
Unit 4	Flexible manufacturing system (FMS)- Introduction, type of flexibility, different FMS systems	9
Unit 5	Computer integrated manufacturing (CIM)	8
	Total	42

REFER	REFERENCES				
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	CAD/CAM by Grover/Zhimmer, PHI	2003			
2	Computer Aided Manufacturing by Kundra, Rao, Tiwari , Tata McGraw HILL.	2017			
3	CAD/CAM by A J Medland and Piers Buounett, Springer	1986			

Course code: Course Title	Course Structure			Pre-Requisite
PRD 513 Computer Integrated	L	Т	Р	NIL
Manufacturing Systems	3	0	2	

Course Objective: To understand CNC classification, its need, construction details and part programming, Evolution Towards CIM system, Automation strategies. To impart knowledge about group technology, Flexible manufacturing system and AI in CIM.

S. No.	Course Outcomes (CO)
CO1	To understand the basics about role of computer and automation in manufacturing
CO2	To understand the automation, types of automation and automation strategies.
CO3	To identify various mechanism for computer based integration between various functions - manufacturing, sales, design, and materials
CO4	To select and understand the application of computer in CAPP, Production Management and ERP
CO5	To apply the concept of group technology, FMS, concurrent engineering, Simulation and AI in CIM systems and to be capable of dealing with CAD, CAM, FMS, CAPP, CIM in industries

COs	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content- PRD 513: Computer Integrated Manufacturing Systems	Contact
		Hours
Unit 1		9
	Evolving manufacturing environment, New competitive challenges,	
	Evolving Role Information Technology, CIM Systems: Flexibility,	
	Integration and Automation Opportunities,	
Unit 2	Automation of information and manufacturing systems. Automation	9
	strategies Towards Elevible Automation Islands of automation	
	Evolution Towards CIM systems	
Unit 3		8
cinte	Computer based integration between various functions - manufacturing,	Ũ
	sales, design, materials, Flexible Manufacturing Systems (FMS) as mini	
	CIM	
Unit 4	Computer Integrated Production Management, ERP, Group technology	8
Unit 5		8
	Concurrent Engineering, Simulation and AI in CIM systems, CIM and Beyond.	
	Total	42

REFER	REFERENCES			
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*		
1	CAD/CAM by Grover, Zhimmer, PHI	2014		
2	Computer Aided Manufacturing by Kundra, Rao, Tiwari, Tata McGraw HILL.	2017		
3	CAD/CAM by A J Medland and Piers Buounett, Springer	1986		

Course code: Course Title	Course Structure			Pre-Requisite
PRD 515: Machatronics	L	Т	Р	NII
T KD 515. Wreenau omes	3	0	2	

Course Objective: To familiarize the students with basics of science and focus in mechanical, electronics, control, software, and computer engineering, and a solid command of the newest technologies. To impart knowledge about sensors, transducers, actuators, modeling and simulation, feedback system.

S. No.	Course Outcomes (CO)
CO1	To identification of key elements of mechatronics system and its representation in terms of block diagram
CO2	To understanding the concept of signal processing and use of interfacing systems such as ADC, DAC, digital I/O
CO3	To interface of Sensors, Actuators using appropriate DAQ micro-controller
CO4	To analyze time and frequency domain of system model (for control application)
CO5	To implement PID control on real time systems and To develop of PLC ladder programming and implementation of real-life system

COs	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	3		
CO4	2	3	3	3	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertize over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

Note: Program may add up to three additional POs approved by BOS of the department higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 515: Mechatronics)			
		Hours		
Unit 1		8		
	Introduction to Mechatronic systems and components; Sensors and			
	transducers;			
Unit 2	Actuators- electrical, electromechanical, electromagnetic, hydraulic, pneumatic, smart material actuators, micro actuators, nano actuators. Active actuators- piezoelectric, shape memory alloys (SMA), electro active polymers (EAP), magneto restrictive, magneto rheological fluid (MR): Stepper and servo motors. Encoders and resolvers	9		
Unit 3	Modeling, analysis and simulation of dynamic systems; use of MATLAB; Bode, Nyquist and root-locus plot	8		
Unit 4	Feedback systems: Open and closed loop control systems; Stability and sensitivity; PID, phase lag and phase lead compensation;	8		
Unit 5	Sampled data systems and Digital controllers; DA/AD converters, microprocessors, interfacing with computers; Digital logic: Analysis and synthesis of Mechatronic systems with application to robotics, CNC systems and others	9		
	Total	42		

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Introduction to Mechatronics and Measurement systems by Alciatore David G., Tata-McGraw Hill India Ltd	2011				
2	Mechatronics: Principles, Concepts and applications by Mahalik.N, Tata-McGraw Hill India Ltd	2017				
3	Mechatronics: Principles and applications by Onwubolu, Elsevier India Pvt Ltd.	2005				

Course code: Course Title	Cour	se Struc	ture	Pre-Requisite
PRD 517: Principles of Machine	L	Т	Р	NIL
Tools	3	0	2	

Course Objective: To familiarize the students with the features and types of machine tools used in industry and shop floor. To understand the capabilities of machine tools in meeting the product requirements. To understand the cutting parameters and machining with tools and equipment's.

S. No.	Course Outcomes (CO)
CO1	To understand the basics of Principles of Machine Tools
CO2	To identify various difficulties in Principles of Machine Tools
CO3	To formulate various difficulties in Principles of Machine Tools
CO4	To select appropriate process/tool/techniques in Principles of Machine Tools
CO5	To apply knowledge in relevance to professional practice and understand the emerging trends of latest technology

COs	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	3		
CO4	2	3	3	3	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 517: Principles of Machine Tools)	Contact Hours
Unit 1	Kinematics of machine tool drives, stepped and stepless speed regulation	9
	design of speed gear box,	
Unit 2	Design of beds, columns, slides etc., their strength and rigidity, design of spindles and bearing	8
Unit 3	Automatic and numerically controlled machine tools, Hydraulic drives testing of machine tools	9
Unit 4	Dynamics acceptance tests, Damping in machine tools	8
Unit 5	Modern trends in machine tool design, transfer machines.	8
	Total	42

REFER	REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*					
1	Principles of Machine Tools by G.C.Sen and A. Bhattacharya, Central Publication	2009					
2	Fundamentals of Machining and Machine Tools by G Boothroyd, McGraw-Hill.	2005					
3							

Course code: Course Title	Cour	se Struc	ture	Pre-Requisite
PRD 519: Automation in	L	Т	Р	NII
Manufacturing	3	0	2	

Course Objective: To familiarize the students with basic understanding of NC, CNC, its classification, its Need and implications of automation in Manufacturing, Automation strategies. To impart knowledge about different types of production systems, drives and material handling system used in automation.

S. No.	Course Outcomes (CO)
CO1	To understand the basics about role of computer and automation in manufacturing
CO2	To understand the automation, types of automation and automation strategies.
CO3	To identify various mechanism for computer based integration between various functions – manufacturing.
CO4	To select and understand the application of CNC system in Automated Production system.
CO5	To apply the deep knowledge of Automation in different production systems as per current need in industrial applications.

COs	POs							
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	3		
CO4	2	3	3	3	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 519: Automation in Manufacturing)	Contact
		Hours
Unit 1		9
	Modern developments in automation in manufacturing and its effect on global competitiveness. Need and implications of automation in	
	Manufacturing,	
Unit 2	Different types of production systems and automation, hard/fixed automation	8
Unit 3	Hydraulic and pneumatic actuators, their design and control devices, sequence operation of hydraulic/pneumatic actuators, designing of systems with hydraulic/pneumatic	9
Unit 4	Electro Pneumatic & Electro Hydraulic Systems design, Relay Logic circuits	8
Unit 5	Material handling systems, applications in manufacturing.	8
	Total	42

REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Hydraulic and Pneumatic Controls by Srinivasan R., Vijay Nicole imprints Pvt. Ltd., Chennai.	2019			
2	Introduction to Hydraulic and Pneumatic by Ilango S and Soundararajan V., Prentice-Hall of India, Delhi	2011			
3	Pneumatic Systems: Principles and Maintenance by Majumdar S.R., Tata McGraw-Hill, Delhi	1996			

Department Elective 2

Course code: Course Title	Course Structure			Pre-Requisite
PRD 520. Materials Management	L	Т	Р	NII
i ND 520. Materials Management	4	0	0	

Course Objective: The key objective of this course is to acquaint the students with Decision making for effective and efficient purchase, storage and flow of materials in manufacturing and service organizations; cost reduction techniques in prepurchase

S. No.	Course Outcomes (CO)
CO1	To understand the basics of materials management
CO2	To Identify various difficulties in materials management
CO3	To Formulate various difficulties in materials management
CO4	To select appropriate process/tool/techniques in materials management
CO5	To apply knowledge in relevance to professional practice and understand the emerging trends of latest technology

COs		POs					
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 520: Materials Management)	Contact
		Hours
Unit 1		8
	Scope of materials management, integrated materials management, Reasons of	
	materials management, relation with other functional areas of organisation,	
	Organizing for materials management, integrated materials management,	
TT 1 (A	conventional and modern approaches to organizing materials management.	
Unit 2	Classification codification Specification standardization simplification and	8
	variety reduction of materials scope of materials management	
Unit 3		8
Chit 5	Inventory problems, inventory policies, classification of inventory models,	0
	Static inventory models, Multi-item Budget Constraint model, Optimal Policy	
	Curve	
Unit 4		10
	Selective inventory management: ABC, VED, FSN analysis, Inventory models: EOQ-	
	ROP Model, Finite Replenishment Rate Model, Lot Size Model with Planned	
	Backlogging, Sensitivity analysis of Lot Size System, Quantity discount model	
Unit 5	Vendor development, Make-Buy decision, Store management, Future trends	8
	Total	42

REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Purchasing & Supply Management by Dobler & Burt, McGraw-Hill	1995			
2	Purchasing & Supply Chain Management by Monczka, Trent & Handfield, Cengage	2020			
3	Materials Management by A K Chitle & R C Gupta, PHI	2014			

Course code: Course Title	Course Structure			Pre-Requisite
PRD 522. Procision Engineering	L	Т	Р	NII
TKD 522. Trecision Engineering	3	0	2	

Course Objective: The aim of this course is to enable the students to exploit the capabilities of Precision Manufacturing processes in order to design Precision Engineering products with outstanding performance.

S. No.	Course Outcomes (CO)
CO1	To understand the concept and importance of precision engineering in manufacturing
	sector
CO2	To apply the mathematical and basic science principles to understand the basic concepts
02	for developing the research plan and apply innovative ideas on various small problems.
CO3	To study the various processes under Mechanical, Thermal and Chemical action. They
005	are able to apply these concepts to develop experimental setup.
CO4	To perform the experiments for variety of case studies. They are able to develop the theme
04	for experimental and computation work.
	To develop and implement the plan to train the quality professionals at shop floor level
CO5	and to develop the quality professionals to work on shop floor independently for variety of
	applications

CO-PO Articulation Matrix							
COs	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 522: Precision Engineering)	Contact
		Hours
Unit 1	Introduction – Precision, Accuracy & Smoothness – Need – Development of overall machining precision-Classes of achievable machining Accuracy-Precision machining-High precision Machining-Ultra precision Machining-application of precision machining	8
Unit 2	Materials for tools and machine elements – carbides – ceramic, CBN & diamond-Tool and work material compatibility; Precision machine element- Introduction – Guide ways – Drive systems – Spindle drive – preferred numbers - Rolling 83 elements – hydrodynamic & hydrostatic bearings –Hybrid fluid bearings	8
Unit 3	- Aero static and aero dynamic bearings-Hybrid gas bearings-materials for bearings; Error control- Error – Sources – Static stiffness – Variation of the cutting force – total compliance – Different machining methods – Thermal effects – heat source – heat dissipation – Stabilization – decreasing thermal effects – forced vibration on accuracy – clamping & setting errors – Control – errors due to locations – principle of constant location surfaces	9
Unit 4	Precision manufacturing-Micro machining processes-diamond machining - micro engraving - Micro replication techniques-forming-casting-injection moulding - micro embossing	8
Unit 5	Energy assisted processes - LBM, EBM, FIB, Micro electro discharge machining-photolithography-LIGA process- Silicon micro machining- Wet and dry etching-thin film deposition; MEMS Introduction – MEMS –characteristics- principle – Design – Application: automobile, defence, health care, Industrial, aerospace etc	9
	Total	42

REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Precision Engineering by Venkatesh V.C. and Izman S., Tata McGraw Hill	2008			
2	Precision Engineering by Murthy R. L., New Age International	2005			
3	Principles of Precision Engineering by Nakazawa H., Oxford University Press	1994			

Course code: Course Title	Course Structure			Pre-Requisite
PRD 524. Operation Research	L	Т	Р	NIL
TKD 324. Operation Research	3	0	2	1412

Course Objective: To allow students to develop the technical, analytic, and managerial skills necessary to perform the tasks successfully

S. No.	Course Outcomes (CO)
CO1	To identify and develop operational research models from the verbal description of the real system.
CO2	To understand the mathematical tools that are needed to solve optimization problems.
CO3	To use mathematical software to solve the proposed models
CO4	To understand the characteristics of different types of decision-making environments and the appropriate decision-making approaches and tools
CO5	To design new simple models to improve decision –making and develop critical thinking and objective analysis of decision problems and develop a report that describes the model and the solving technique, analyze the results and propose recommendations in language understandable to the decision making processes.

CO-PO Articulation Matrix									
COs	POs								
	PO1 PO2 PO3 PO4 PO5 PO6								
CO1	1	1	1	1	1	2			
CO2	2	2	2	2	2	2			
CO3	2	2	2	2	2	3			
CO4	2	3	3	3	3	3			
CO5	3	3	3	3	3	3			

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 524: Operation Research)	Contact
		Hours
Unit 1		9
	Historical development, Nature of O.R. projects, Model Building Linear	
	deterministic optimization models-linear Programming	
Unit 2	Simpley Algorithm Duality Degeneracy transportation and Trans-	9
	shipment models, assignments, post optimality analysis. Integer LP	
Unit 3	Queuing theory, elementary concepts of Dynamics Programming, Goal Programming	8
Unit 4	Inventory control, Game Theory and Markov Chains. Application of OR software's.	8
Unit 5	Non-Linear programming: Fundamentals of non-linear programming problems- Canonical form, Graphical solution, constrained and unconstrained non linear programming -Lagrangian method	8
	Total	42

REFER	REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*					
1	Operation Research by J. K. Sharma;	2001					
2	Operations Research by Hamdi A. Taha, Pearson	2006					
3	Operations Research: Concepts and cases by F S Hiller and G J Liebermaan, TMH	2010					

Course code: Course Title	Cour	Irse Structure Pre-Requisite			
PRD 526: Methods Engineering	L	Т	Р	NIL	
and Ergonomics	4	0	0	11112	

Course Objective: To aware and provide knowledge about ergonomics and different disorders.

S. No.	Course Outcomes (CO)
CO1	To understand work measurement and work improvement techniques like stop watch time study, work sampling, method study, etc.
CO2	To understand ergonomics with human comfort point of view
CO3	To identify harmful work conditions on the basis of theory and methods
CO4	To carry out a design for assembly study
CO5	To select and apply a proper method to study and quantify human physical workload in an observed situation and design an appropriate material presentation at a workplace

CO-PO Articulation Matrix									
COs	POs								
	PO1 PO2 PO3 PO4 PO5 PO6								
CO1	1	1	1	1	1	2			
CO2	2	2	2	2	2	2			
CO3	2	2	2	2	2	3			
CO4	2	3	3	3	3	3			
CO5	3	3	3	3	3	3			

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 526: Methods Engineering and Ergonomics)	Contact Hours
TT •/ 1		
Unit I		9
	Definition, origin, scope and goals of ergonomics as a field of study.	
	Examples of applications of ergonomics in design. Types of data from	
	human at physical, physiological, cognitive and affective levels	
Unit 2		8
	Data gathering and analysis techniques. Use of descriptive and inferential	
	statistics in ergonomic data. Applications of mean, median, mode and	
	percentile in anthropometry	
Unit 3		9
cm c	Use of anthropometry in workstation design. Human physiological	-
	potentials and limitations in terms of load carrying capacity. Concept of	
	comfort, fatigue and stress.	
Unit 4	Design for the cognitive user. Concept of mental workload	8
		0
Unit 5	Cognitive perspective in control panel design and graphical user interface design.	8
	Total	42

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Motion and time study by Ralph M. Barnes, Wiley	1980				
2	Motion and time study by Benjamin W. Niebe l, Richard D. Irwin, Inc	2012				
3	Operations Research, by D.S. Hira, P. K. Gupta, S. Chand	1995				

Course code: Course Title	Cour	se Struc	Pre-Requisite	
PRD 528: Composite Materials	L	Т	Р	NIL
and Processing	4	0	0	

Course Objective: The objective of this course is to develop ability to identify the properties of fiber and matrix materials used in commercial composites and some common manufacturing techniques, also to predict the elastic properties of both long and short fiber composites based on the constituent properties.

S. No.	Course Outcomes (CO)
CO1	To understand classification and types of matrices material and reinforcements, Characteristics & selection, Fiber composites, laminated composites, Particulate composites, Prepegs, and sandwich construction. To understand application of composite materials for Aircrafts, missiles, Space hardware, automobile, Electrical and Electronics, Marine, Recreational
CO2	To understand Hooke's law for different types of materials, number of elastic constants, derivation of nine independent constants for orthotropic material, two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two dimensional angle lamina, engineering constants - Numerical problems. Invariant properties. Stress-Strain relations for lamina of arbitrary orientation, Numerical problems.
CO3	To understand evaluation of the four elastic moduli, Rule of mixture, Numerical problems. Maximum stress theory, Maximum strain theory, Tsai-Hill theory, Tsai, Wu tensor theory, Numerical problems
CO4	To understand Kirchoff hypothesis, CL T, A, B, and D matrices (Detailed derivation) Engineering constants, Special cases of laminates, Numerical problems.
CO5	To understand Layup and curing - open and closed mould processing, Hand lay, Up techniques, Bag moulding and filament winding. Pultrusion, Pulforming, Thermoforming, Injection moulding, Cutting, Machining and joining, tooling, Quality assurance, Introduction, material qualification, Types of defects, NDT methods.

CO-PO Articulation Matrix								
COs	POs							
PO1 PO2 PO3 PO4 PO5 PO								
CO1	2	2	2	2	3	3		
CO2	3	3	2	2	3	3		
CO3	3	3	2	2	3	3		
CO4	3	3	2	2	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems. PO6: To demonstrate a master degree over the area as per Computer Aided Analysis and Design. The mastery should be at a level higher than the requirements in the appropriate bachelor program

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

S. No.	Content: PRD 528: Composite Materials and Processing	Contact			
		Hours			
Unit 1	Introduction to Composite Materials: Definition, Classification, Types	s of 9			
	matrices material and reinforcements, Characteristics & selection, Fi	ber			
	composites, laminated composites, Particulate composites, Prepegs, a	and			
	sandwich construction.				
	Metal Matrix Composites: Manufacturing of MMC, Reinforcement materi	als,			
	Types, Characteristics and selection, Base metals, Selection, Applications.				
Unit 2	Macro Mechanics of a Lamina: Hooke's law for different types of materi	als, 8			
	Number of elastic constants, Derivation of nine independent constants for				
	orthotropic material, Two - dimensional relationship of compliance and				
	stiffness matrix. Hooke's law for two-dimensional angle lamina, engineer	ing			
	constants - Numerical problems. Invariant properties. Stress-Strain relations	for			
	lamina of arbitrary orientation, Numerical problems.				
Unit 3	Micro Mechanical Analysis of a Lamina: Introduction, Evaluation of the f	our 8			
	elastic moduli, Rule of mixture, Numerical problems.				
	Blaxial Strength Theories: Maximum stress theory, Maximum strain theo	ory,			
TI	I sai-Hill theory, I sai, wu tensor theory, Numerical problems.	- ff 0			
Unit 4 Iviacro iviecnanical Analysis of Laminate: Introduction, code, Kirchol hypothesis CL T A P and D matrices (Detailed derivation) Engineering					
constants. Special cases of laminates Numerical problems					
Unit 5 Manufacturing: Lay up and curing - open and closed mould processing. Han					
Onit 5	lay. Up techniques Bag moulding and filament winding. Pultrusion				
Pulforming. Thermoforming. Injection moulding. Cutting. Machining and					
ioining tooling Quality assurance. Introduction material qualification Types					
	of defects, NDT methods.	F -~			
	Application Developments: Aircrafts, missiles, Space hardware, automob	oile,			
	Electrical and Electronics, Marine, Recreational and sports equipment-fut	ure			
	potential of composites.				
	Total	42			
	REFERENCES				
		Year of			
S. No.	Name of Books/Authors/Publishers	Publication /			
		Reprint*			
1	Mechanics of composite materials, Autar K. Kaw CRC Press New York.	2006			
2.	Mechanics of Composite Materials, Rober M. JonessMc-Graw Hill				
	Kogakusha Ltd.	1770			
3	Composite Material Science and Engineering, Krishan K. Chawla Springer.	2015			
*: Lat	est edition of the title of author may please be listed.				

PRD 508 Department Elective 3

Course code: Course TitleCourse StructurePre-Requisite
--

PRD 530: Maintenance	L	Т	Р	NII
Management	4	0	0	

Course Objective: The ability to apply principles and techniques in the design, planning and control of the production systems to optimize or make best use of resources in achieving their objectives.

S. No.	Course Outcomes (CO)
CO1	To use of contemporary maintenance management practices.
CO2	To manage and develop the maintenance activities in a modern enterprise
CO3	To perform maintenance activities in a cost-effective manner
CO4	To determine the optimal overhaul/repair/replacement maintenance policy for an equipment subject to breakdown.
CO5	To determine the optimal inspection frequency for maximization of profit and minimization of down time and explain different maintenance systems and the steps involved in establishing a maintenance plan and designing a technically sound preventive maintenance and lubrication program.

CO-PO Articulation Matrix								
COs		POs						
	PO1 PO2 PO3 PO4 PO5 PO6							
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	3		
CO4	2	3	3	3	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 530 : Maintenance Management)	Contact
		Hours
Unit 1		9
	Introduction to maintenance management, Reliability basics, Asset	
	criticality Analysis, Reliability centered maintenance, Basic maintenance	
	models for age and time based replacement, block and group	
	replacement, inspection and shock based replacement	
Unit 2		9
	imperfect maintenance models, Maintainability models, Availability	
	models, Life cycle cost models	
Unit 3		8
	Simulation based approach for maintenance planning, Queuing models	
	for maintenance planning	
Unit 4		8
	Models for condition monitoring, Models for Maintenance scheduling,	-
Unit 5	Maintenance performance measurement, Asset management practices, Case studies.	8
	Total	42

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Engineering Maintainbility by Dhillon, B.S., Prentice Hall of India, New Delhi	1999				
2	Logistics Engineering and Management by Blanchard, Benjamin, S., Pearson	1998				
3						

Course code: Course Title	Course Structure			Pre-Requisite
PRD 532: Managerial Concept &	L	Т	Р	NIL
Organizational Behaviour	4	0	0	

Course Objective: To familiarize the students with basics of managerial concept & organizational behavior. To impart knowledge about to process and climate effects in Organization Behavior and understand the organizational system, including organizational structures, culture, human resources, and change.

S. No.	Course Outcomes (CO)
CO1	To understand the Importance & Role of Management in the Organizations
CO2	To evaluate the different aspects related to Decision Making and Controlling Process
CO3	To understand individual behavior in organizations, including diversity, attitudes, job satisfaction, emotions, moods, personality, values, perception, decision making, and motivational theories.
CO4	To understand group behavior in organizations, including communication, leadership, power and politics, conflict, and negotiations.
CO5	To evaluate the process and climate effects in Organization Behavior and understand the organizational system, including organizational structures, culture, human resources, and change

CO-PO Articulation Matrix								
COs		POs						
	PO1	PO2	PO3	PO4	PO5	PO6		
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	3		
CO4	2	3	3	3	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 532: Managerial Concept & Organizational Behaviour)	Contact
		Hours
Unit 1		9
	The over-all concepts of the nature of management, emergence of	
	management: new challenges; the dimensions of management, the	
	functions of Manager, overview of the functional approach to	
	management-planning, organizing, directing coordinating and	
	controlling. Planning, policies, procedure and methods, decision-making	
Unit 2		8
	Organizing: Organization structure, principles and theories in	
	organization, departmentalization, vertical and horizontal growth in	
	organization, span of management.	
Unit 3		8
	centralization and decentralization line and staff function, organization as	
	a social system-formal and informal organization. Directing:	
	Administrative communication, motivation and leadership.	
Unit 4		8
	Delegation. Coordinating: Internal and external coordination, committee in	
	management. Controlling: The process of control, techniques of control Philosophical	
T T •/ F	considerations: Social responsibilities of management.	0
Unit 5	Indian management: the power and influence of Indian management, the role of	9
	management associations. Influence of Social and Cultural factors in human behavior.	
	Socio-metry, attitudes, values and norms and factors influencing manager's behavior.	
	Total	42

REFER	ENCES	
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*
1	Management & organizational behaviour by R B Rudani, Tata McGraHill Education.	2011
2	Organizational behaviour by Robbins S P, Judge T A and Sanghi S, Pearson	2018
3	Organizational behaviour by Robbins S P, Pearson	2013

Course code: Course Title	Course Structure			Pre-Requisite
PRD 534: Industrial Quality	L	Т	Р	NIL
Control	4	0	0	11112

Course Objective: To make students aware of industrial engineering concepts of work study and measurement, quality control and reliability etc.

S. No.	Course Outcomes (CO)
CO1	To understand the concepts and importance of quality management in manufacturing and service sector
CO2	To develop a plan to implement various types of control charts and Acceptance sampling plans
CO3	To conduct research in areas like Quality Function Deployment, Six sigma, Deming Cycle, QC tools.
CO4	To analyze and improve the existing quality management systems in industry.
CO5	To develop and implement a plan to train the quality professionals at management level as well as shop floor level and assess the reliability and maintainability of products and processes at industry level.

	CO-PO Articulation Matrix					
COs		POs				
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	2
CO2	2	2	2	2	2	2
CO3	2	2	2	2	2	3
CO4	2	3	3	3	3	3
CO5	3	3	3	3	3	3

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 534: Industrial Quality Control)	Contact
		Hours
Unit 1		9
	Introduction: Quality basics and history, Quality Philosophy (Deming,	
	Juran, Crosby), Dimensions of quality, Quality Costs: Quality Cost	
	Measurement, Utilizing Quality Costs for Decision-Making. Seven QC	
	Tools: Histogram, Pareto Diagrams, Check Sheet, Cause-Effect	
	Diagrams, Scatter Diagrams, Control Charts and Stratification. Statistical	
	Process Control	
Unit 2	Control Charts for Variables: Definitions, Variation: Common vs, Special	9
	Causes, Control Chart Techniques, X-bar and R chart, X-bar and S charts.	
	Control Chart Interpretation and Analysis, Process Capability, Other	
	Variable Control Charts: Individuals and Moving Range Charts. Moving	
	Average and Moving Range Charts: Control Charts for Attributes:	
	Definitions, Control Charts for Non-conforming Units, Control Charts for	
	Counts of Non-conforming Units	
Unit 3		8
	Sampling Techniques: Single, Double, Multiple, Sequential Sampling	
	Techniques, LTPD, AQL, AOQL; Quality Systems: ISO 9000, ISO	
	14000, ISO 18000, Six Sigma, Certification Requirements, Evolving	
	Standards; Reliability: System concepts in reliability, availability and maintainability (RAM) Engineering	
Unit 4		8
	Fundamentals of reliability, Failure distributions, System reliability assessment.	
	Kenability of repairable by Markov approach. Point, mission and steady state	
Unit 5	Advanced Topics: Quality Function Deployment Design of Experiments	8
Unit 5	Benchmarking and Auditing.	0
	Total	42

REFERE	REFERENCES			
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*		
1	The Management and Control of Quality by J R Evans and W M, Lindsay, Cengage learning, India	2020		
2	Total Quality Management by Besterfield, Pearson Education	2011		
3	Statistical Quality Control by Douglas C. Montgomery, Wiley India Pvt Ltd	2012		

Course code: Course Title	Course Structure			Pre-Requisite
PRD 536: Supply Chain	L	Т	Р	NIL
Management	4	0	0	

Course Objective: To understand the key considerations at the various stages involved in the supply of product in order to maintain the smooth flow from source to the point of consumption so that overall organizational performance may improve.

S. No.	Course Outcomes (CO)
CO1	To understand fundamental supply chain management concepts.
CO2	To evaluate and manage an effective supply chain
CO3	To understand the foundational role of logistics as it relates to transportation and warehousing.
CO4	To align the management of a supply chain with corporate goals and strategies
CO5	To analyze and improve supply chain processes and measure the performance of a supply chain.

	CO-PO Articulation Matrix						
COs		POs					
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 536: Supply Chain Management)	Contact
		Hours
Unit 1	Supply Chain Management: Concepts, theoretical background and managerial issues, Inventory Management and Risk Pooling, Demand Forecasting	8
Unit 2	Aggregate Planning and MRP, Network Planning, Distribution Strategies, Smart Pricing, Supply Chain Integration, Vendor Development, Procurement	9
Unit 3	Outsourcing Strategies, Strategic Alliances, Value of Information and IT in SCM	8
Unit 4	Coordinated Product and supply chain Design, Global Supply Chain, Customer Value and Performance Measurement of Supply Chain.	8
Unit 5	International Issues in Supply Chain Management: Concepts in Globalization, Globalization forces, Risks and Advantages of International supply chains, Issues in International supply chain management, regional differences in logistics.	9
	Total	42

REFERE	REFERENCES				
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Designing and Managing the Supply Chain: Concepts, Strategies and Case Studies by David Simchi-Levi, Philip Kaminsky, Edith Simchi-Levi and Ravi Shankar, Tata McGraw-Hill	2008			
2	Supply Chain Management: Strategy, Planning, and Operation by Sunil Chopra and Peter Meindel, Prentice Hall of India.	2010			
3	Principles of SCM: A Balanced Approach by Wisner, JD, Leong GK and Tan, KC, Cengage Learning	2019			

Course code: Course Title	Course Structure			Pre-Requisite
PRD 538: Production &	L	Т	Р	NIL
Operation Management	3	0	2	11112

Course Objective: To allow students to develop the technical, analytic, and managerial skills necessary to perform the tasks successfully

S. No.	Course Outcomes (CO)
CO1	To demonstrate an understanding of production as a process of converting or transforming resources into products
CO2	To understand the basic concepts and theories of the production management
CO3	To comprehend the operations management situations with greater confidence.
CO4	To anticipate issues in production and operations processes they may face during their careers
CO5	To expand individual knowledge of operations management principles and practices and apply operations management concepts and their influence on business decisions

CO-PO Articulation Matrix								
COs	POs							
	PO1 PO2 PO3 PO4 PO5 PO6							
CO1	1	1	1	1	1	2		
CO2	2	2	2	2	2	2		
CO3	2	2	2	2	2	3		
CO4	2	3	3	3	3	3		
CO5	3	3	3	3	3	3		

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 538: Production & Operation Management)	Contact
		Hours
Unit 1	Introduction to Production & Operation Management, Management functions of an organization, job design and work measurement: job design decisions, approaches to job design, work measurement standards, learning curves, and its application.	9
Unit 2	Work flow systems; pull & push systems, MRP-I MRP-II, cellular manufacturing and FMS, CIMS, JIT manufacturing, automated production lines, line balancing, facility layout, bottleneck and balance matching,	9
Unit 3	capacity management, Management of professional services. Aggregate planning: aggregate units of production cost in aggregate planning,	8
Unit 4	leave of production strategy, mixed strategy, mathematical model, linear decision rule	8
Unit 5	master production scheduling shop scheduling, shop floor control, manpower scheduling DRP & demand management.	8
	Total	42

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Production & operation Management by Chase, Aquilano, Jacobs TMH	2009				
2	Production & operation Management by James Dilworth, Pearson International	1993				
3	Production & operation Management by <u>Jay Heizer</u> , <u>Barry Render</u> , Prentice Hall	2009				

Course code: Course Title	Cour	se Struc	ture	Pre-Requisite
UEC-502: Research	L	Т	Р	
Methodology & IPR (Online)	3	0	2	NIL

Course Objective: To familiarize the students with the basic techniques and tools for conducting systematic researchand and develop an understanding of the relevant tools and techniques applicable in proposed area of research. To familiarize them with basic skills in design, implementation and evaluation of research methods to conduct the research.

S. No.	Course Outcomes (CO)
CO1	To introduce research methods and processes.
CO2	To formulate research problem statement and prepare the plan for investigations
CO3	To apply various quantitative techniques for data analysis.
CO4	To communicate and present research findings.
CO5	To understand IPR and related aspects.

CO-PO Articulation Matrix							
COs	POs						
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	2	2	2	
CO2	3	3	2	3	2	2	
CO3	2	2	2	2	2	3	
CO4	2	2	1	1	2	2	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Industrial Engineering and Management.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (UEC-502: Research Methodology & IPR (Online))	Contact
		Hours
Unit 1	Introduction, Concepts of research, Meaning and objectives of research,	
	Research process, Types of research, Research problem identification,	8
	Research proposal-contents, Funding agencies, Ethical aspects and	
	Plagiarism detection tools.	
Unit 2	Research design process, Need and types of research design, Literature survey, Use	
	of internet and advanced search techniques, Various reputed publishers and their	
	databases, identification of research gaps, Measurement and scaling techniques, Data	9
	collection-types and methods, Processing and analysis of data, Design and analysis of	
	experiment.	
Unit 3	Quantitative techniques, sampling fundamentals, Type of hypothesis, Introduction	
	and applications of Binomial, normal and Poisson distributions, Statistical tests: Chi-	9
	squared test, t-test, f-test etc., Multivariate analysis, Introduction to various statistical	
	analysis software.	
Unit 4	Computer applications in research, Pre-writing considerations, Principles of thesis and	8
	report writing, Formats for thesis, report and research papers, Documentation and	
	presentation tools- introduction to LATEX and MS Office.	
Unit 5	Nature of Intellectual Property: Patents, Designs, Trade and Copyright, Process of	
	Patenting and Development: technological research, innovation, patenting,	
	development, new developments in IPR: National and international scenarios.	
		8
	Total	42

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Dr. C.R. Kothari, "Research Methodology: Methods and Techniques", New Age International Publisher.	2019				
2	Stuart Melville and Wayne Goddard, "Research Methodology: An Introduction for Science & Engineering Students", Juta and Company Ltd.	2004				
3	Wadehra B.L., "Law Relating to Patents, Trademarks, Copyright Designs and Geographical Indicators", Universal Law Publishing	2004				

Open Elective 1

Course code: Course Title	Cour	se Struc	ture	Pre-Requisite
OME601: Optimization	L	Т	Р	NIL
Techniques	3	0	2	14112

Course Objective: To allow students to develop the technical, analytic, and managerial skills necessary to perform the tasks successfully

S. No.	Course Outcomes (CO)
CO1	Apply the theory of optimization methods and algorithms to develop and for solving various types of optimization problems.
CO2	Explain the applications of optimization techniques and solve practical problems on linear programming, sensitivity analysis and transportation model.
CO3	Formulate and solve non-linear programming problems and constrained optimization.
CO4	Demonstrate the applications of multi-objective optimization methods.
CO5	Formulate and solve the stochastic programming and solve the problems using heuristic modelling techniques.

	CO-PO Articulation Matrix								
COs		POs							
	PO1 PO2 PO3 PO4 PO5 PO6								
CO1	1	1	1	1	1	2			
CO2	2	2	2	2	2	2			
CO3	2	2	2	2	2	3			
CO4	2	3	3	3	3	3			
CO5	3	3	3	3	3	3			

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (OME601: Optimization Techniques)	Contact
TI:4 1		
	Introduction to Optimization; Introduction, Engineering Applications, Statement of an Optimization Problem, Classification; Linear Programming: Simplex Algorithm; Two Phase Method, Big 'M' Method, Revised Simplex Method, Duality in Linear Programming; Prime-Dual Relations, Duality Theorem, Dual simplex method, Sensitivity and Post Optimality Analysis	9
Unit 2	Transportation and Assignment Problem; Integer Programming – Branch and bound Method, Cutting Plane Method	8
Unit 3	Dynamic Programming: Elementary Concepts of Dynamics Programming, Multi stage Decision Process, Calculus Method and Tabular Method; Classical Optimization techniques – Unconstrained Optimization: Optimizing Single-Variable Functions, Optimizing Multi- Variable Functions.	8
Unit 4	Constrained Optimization: Optimizing Multivariable Functions with Equality Constraint: Lagrange Multipliers Method. Constrained Multivariable Optimization with inequality constrained: Kuhn-Tucker Necessary conditions, Kuhn –Tucker Sufficient Conditions; Non-Linear Programming-Unconstrained Optimization Techniques: Direct search methods, Descent Methods.	9
Unit 5	Constrained Optimizations: Direct and Indirect methods; Introduction to Advanced Optimization Techniques –Genetic Algorithms (GA), Simulated Annealing, Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) etc.	8
	Total	42

REFER	REFERENCES				
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Optimization of Engineering Design by Deb, K., PHI	2021			
2	Operations Research by Hamdi A. Taha, Pearson	2006			
3	Operations Research by D.S. Hira, P. K. Gupta, S. Chand	1995			

Course code: Course Title	Course Structure			Pre-Requisite
PRD 6022: Surface Engineering	L	Т	Р	NII
i KD 0022. Surface Elignitering	4	0	0	

Course Objective: To enable the students to exploit the capabilities of Surface Engineering methods/ processes in order to design quality products with outstanding performance

S. No.	Course Outcomes (CO)
CO1	To understand the engineering and scientific reasons behind identifying the right surface engineering method among number of processes
CO2	To understand and appreciate the practical difficulties in surface engineering methods
CO3	To understand the metallurgical changes occurring during a coating or a surface modification technique to improve a technique and hence finally appreciate the life of coatings
CO4	To understand and use fundamental concepts of surfaces, interfaces and coatings to create engineering solutions to related industrial needs
CO5	To analyze and critically assess surface engineering problems and appreciate cutting-edge research in the area of surface engineering and coatings

		(CO-PO Artic	ulation Matr	ix	
COs				POs		
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	1	1	1	1	1	2
CO2	2	2	2	2	2	2
CO3	2	2	2	2	2	3
CO4	2	3	3	3	3	3
CO5	3	3	3	3	3	3

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 6021: Precision Engineering)			
		Hours		
Unit 1	Introduction to surface engineering – importance and scope of surface engineering, conventional surface engineering practices like pickling, grinding, buffing etc.,	8		
Unit 2	surface engineering by material addition like electroplating, surface modification of ferrous and non-ferrous materials like nitriding, cyaniding, aluminizing etc. Advanced surface engineering practices like laser assisted surface modification	9		
Unit 3	electron beam assisted modification, spraying techniques like fame and plasma spraying, high velocity oxy-fuel, cold spray techniques. Sputter deposition processes, PVD and CVD methods of surface coatings	9		
Unit 4	surface modification by ion implantation and ion beam mixing Characterization of the engineered surface and coatings like thickness	8		
Unit 5	porosity and adhesion of coatings, surface microscopy and spectroscopic analysis of the modified surfaces. Functional coatings and their applications.	8		
	Total	42		

REFER	REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Introduction to surface engineering and functionally engineered materials by Peter Martin, John Wiley and Sons	2011				
2	Tribology and Surface Engineering by J. Paulo Davum, Nova Science Publishing	2012				
3						

Course code: Course Title	Course Structure		ture	Pre-Requisite
PRD 6023: Design for	L	Т	Р	NIL
Manufacturing and Assembly	4	0	0	11112

Course Objective: To allow students to develop the technical, analytical, and managerial skills necessary to perform the tasks successfully

-	
S. No.	Course Outcomes (CO)
CO1	To understand the complex interrelationships between design and manufacturing
CO2	To explore and understand basic manufacturing processes and the design for manufacturing (DFM) implications of design choices for specific manufacturing processes
CO3	To use assembly considerations and assembly costs in evaluations
CO4	To Understand the role of software applications in evaluating designs for manufacturing and assembly costs; understand approaches and practices related to CAD model building and model checking for specific manufacturing processes such as models for sheet metal and models for casts and molds
CO5	To Understand the quality aspects of design for manufacture and assembly and apply the concept of DFM for casting, welding, forming and assembly

CO-PO Articulation Matrix							
COs		POs					
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 6023: Design for Manufacturing and Assembly)	Contact Hours
Unit 1		Q
	Product design for life-cycle, concurrent engineering, design for manufacture, rule-based and plan based DFM	,
Unit 2	Automated manufacturability assessment, Automated manufacturability assessment,	8
Unit 3	Commonly used tools for design for manufacture and assembly tools including, QFD, POKA YOKE, FMEA,	9
Unit 4	Design for manual assembly and automated assembly, design for environment	8
Unit 5	Industrial and real-life case studies of design for manufacture and assembly.	8
	Total	42

REFER	REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Designing for Manufacturing by Harry Peck, Pitman Publications	1973				
2	Engineering Metrology by R.K. Jain, Khanna Publication	2022				
3						

Course code: Course Title	Course Structure			Pre-Requisite
PRD 6024. Reliability Engineering	L	Т	Р	NII
r KD 0024. Kenability Englicering	3	0	2	

Course Objective: To develop the ability in formulating suitable maintenance strategies to achieve reliable a manufacturing system. To equip with essential system diagnosis techniques so that students can identify and take appropriate actions on error symptoms and causes of failures.

S. No.	Course Outcomes (CO)
CO1	To understand major concepts of reliability prediction
CO2	To analyze statistical experiments leading to reliability modeling (DFM) implications of design choices for specific manufacturing processes
CO3	To identify reliability testing components
CO4	To apply reliability theory to assessment of reliability in engineering design
CO5	To estimate reliability functions and parameters of product/component systems using reliability block diagram, fault tree and event tree and evaluate maintainability and availability of product/component systems, and different maintenance strategies.

CO-PO Articulation Matrix							
COs		POs					
	PO1	PO2	PO3	PO4	PO5	PO6	
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 6024: Reliability Engineering)	Contact
		Hours
Unit 1	Introduction: System concepts in reliability, availability and maintainability (RAM) Engineering, Practical applications of RAM Engineering to systems, products and processes; Concepts, terms and definitions	8
Unit 2	Failure rate function, Probability density function, Cumulative distribution function, reliability function, Mean time to failure (MTTF), MTBF, MTTR; Fundamentals of reliability: Failure distributions; Exponential, Weibull, Normal and Lognormal; Constant failure rate model and time dependent failure models	8
Unit 3	System reliability assessment: Series, Parallel, Combined series-parallel configurations; Cut sets and path sets approach, fault tree analysis (FTA); State dependent systems; Markov analysis, load sharing system, standby system, degraded system, Monte Carlo simulation; Design for Reliability and reliability improvement: Reliability specifications and system measurements	9
Unit 4	reliability allocation; exponential case, optimal allocations, arnica method, AGREE method, Various types of redundancies; active and passive redundancy, k-out-of-n-redundancy, standby redundancy, optimization, reliability-cost trade off; Availability and maintainability: Point, mission and steady state availability;	8
Unit 5	Availability assessment, Maintainability and its assessment; Maintenance policies: individual policy, Planned, preventive and condition based maintenance; Opportunistic maintenance policy; Design for maintainability: Maintenance requirements, measurements and specifications, fault diagnosis, failure mode and effect analysis (FMEA), Parts standardization and interchangeability, modularization, accessibility, repair versus replacement, proactive maintenance, maintainability prediction and demonstration.	9
	Total	42

REFERENCES						
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*				
1	Reliability Engineering by Srinath, L. S., East –West Press Ltd., New Delhi	2005				
2	Engineering Maintainbility by Dhillon, B. S., Prentice Hall of India, New Delhi	1999				

Course code: Course Title	Course Structure			Pre-Requisite
PRD 6025: IT in manufacturing	L	Т	Р	NII
Enterprise	4	0	0	

Course Objective: To familiarize the students with basics of advanced manufacturing systems. To impart knowledge about the basic principles of IT in manufacturing., and flexible manufacturing systems and evaluate the performance of IT enabled supply chains.

S. No.	Course Outcomes (CO)
CO1	To understand major applications of It in manufacturing enterprises.
CO2	To analyze the major challenges in application of IT tools in manufacturing
CO3	To identify area of applications of IT in manufacturing.
CO4	To apply technology management and technology transfer
CO5	To understand the applications of flexible manufacturing systems and evaluate the performance of IT enabled supply chains.

CO-PO Articulation Matrix							
COs		POs					
	PO1 PO2 PO3 PO4 PO5 PO6						
CO1	1	1	1	1	1	2	
CO2	2	2	2	2	2	2	
CO3	2	2	2	2	2	3	
CO4	2	3	3	3	3	3	
CO5	3	3	3	3	3	3	

Three values 1/2/3 (1 indicates low, 2 indicates medium, and 3 indicates high) can be filled for CO-PO articulation matrix. As per NBA, there are three standard POs that are given below.

Program Outcomes

PO1: An ability to independently carry out research /investigation and development work to solve practical problems

PO2: An ability to write and present a substantial technical report/document

PO3: An ability to demonstrate expertise over the area as per the specialization of the program.

PO-4: To integrate basic and advance research knowledge for identification and formulation of problem statement to focus on alternate approaches for their solution.

PO-5: To be able to apply the research knowledge for solution to industry specific problems.

PO6: To demonstrate a master degree over the area as per Production Engineering.

The mastery should be at a level higher than the requirements in the appropriate bachelor program

S. No.	Content (PRD 6025: IT in manufacturing Enterprise)	Contact
		Hours
Unit 1		9
	Production Systems, Manufacturing Enterprises as Systems, Appreciate	
	the evolving manufacturing environment and multi-attributed	
	competition: IT role Challenges and Opportunities, Evolving Role of	
	Information Technology in Enterprises.	
Unit 2		9
	P&I Implications, Technology Management Challenges, Technical	
	Fundamentals: MIS in Manufacturing Enterprises, FMS (Flexible	
	Manufacturing Systems), CIM Systems, Intelligent Manufacturing	
	Systems.	
Unit 3		8
	Concurrent Engineering and Extended Enterprises, ERP (Enterprise	
	Resource Planning).	
Unit 4		8
	E-Business and Supply Chain Management, Discrete Event Simulation	
Unit 5	AI Applications in manufacturing enterprises, Implementation Issues, Future	8
	Trends, Careers.	
	Total	42

REFERENCES					
S. No.	Name of Books/Authors/Publishers	Year of Publication / Reprint*			
1	Information Technology Project Management by Kathy Schwalbe, Cengage	2019			
2	Analysis of Manufacturing Enterprises by N Viswanadham, Springer	2012			
3	Information Technology for Manufacturing by Kevin Ake, John Clemons, Mark Cubin, Bruce Lilly, CRC press	2003			